
Algorithms on Graphs
Umang Bhaskar & Juhi Chaudhary

STCS Vigyan Vidushi 2024

Day 1, session 1: Basic graph algorithms

Hello!
Umang Bhaskar
born and brought up in Allahabad, UP
spent time in:

MNNIT
Allahabad TCS IIT

Bombay
Dartmouth

College Caltech U of
Waterloo

faculty in STCS, TIFR since 2015
enjoy traveling, hiking, reading (fantasy / sci fi / biographies / ...) ,
chatting, ...
dislike bullet points

Hello!
Juhi Chaudhary

spent time in:

Miranda
House

(Maths (H))

IITD Ben-Gurion
University TIFR

(since Jan ’24)

work in graph theory, game theory, parametrized complexity, ...

will also be joining you for the mentorship sessions

This course
Graphs are v v fundamental

Focus is going to be on understanding

All material will be uploaded to the webpage
www.tcs.tifr.res.in/~umang/vv24.html

To start with, please put your name and where you’re from
on the sheet of paper being passed around.

http://www.tcs.tifr.res.in/~umang/vv24.html

Nomenclature

A graph (or network)
consists of vertices (or nodes)
connected by edges (or links or arcs)

𝐺 = (𝑉, 𝐸)

where 𝑉 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓}

a b

c

d

e

f

and 𝐸 = { 𝑎, 𝑏 , 𝑎, 𝑓 , 𝑎, 𝑑 ,

𝑏, 𝑒 , 𝑏, 𝑐 ,
𝑐, 𝑑 , 𝑒, 𝑑 , 𝑒, 𝑓 }

Neighbourhood 𝑁(𝑣):
a b

c

d

e

f

set of vertices
adjacent to 𝑣

E.g., 𝑁 𝑎 = {𝑏, 𝑑, 𝑓}

Degree 𝑑𝑒𝑔 𝑣 ≔ 𝑁 𝑣

Nomenclature

Neighbourhood 𝑁(𝑣):
a b

c

d

e

f

set of vertices
adjacent to 𝑣

E.g., 𝑁 𝑎 = {𝑏, 𝑒, 𝑓}

Degree 𝑑𝑒𝑔 𝑣 ≔ 𝑁 𝑣

Q: Given a graph G = (V,E),
σ𝑣 deg(𝑣) ?? |𝐸|

Nomenclature

Neighbourhood 𝑁(𝑣):
a b

c

d

e

f

set of vertices
adjacent to 𝑣

E.g., 𝑁 𝑎 = {𝑏, 𝑒, 𝑓}

Q: Given a graph G = (V,E),
σ𝑣 deg(𝑣) ?? |𝐸|

deg 𝑎 = 3
deg 𝑏 = 3

deg 𝑐 = 2

deg 𝑑 = 3
deg 𝑓 = 2

deg 𝑒 = 3

Nomenclature

Degree 𝑑𝑒𝑔 𝑣 ≔ 𝑁 𝑣

Neighbourhood 𝑁(𝑣):
a b

c

d

e

f

set of vertices
adjacent to 𝑣

E.g., 𝑁 𝑎 = {𝑏, 𝑒, 𝑓}

Q: Given a graph G = (V,E),
σ𝑣 deg(𝑣) ?? |𝐸|

σ𝑣 deg(𝑣) = 16, 𝐸 = 8

deg 𝑎 = 3
deg 𝑏 = 3

deg 𝑐 = 2

deg 𝑑 = 3
deg 𝑓 = 2

deg 𝑒 = 3

Nomenclature

Degree 𝑑𝑒𝑔 𝑣 ≔ 𝑁 𝑣

a b

c

d

e

f

Given a graph 𝐺 = (𝑉, 𝐸),

෍

𝑣

deg(𝑣) = 2|𝐸|

σ𝑣 deg(𝑣) = 16, 𝐸 = 8

deg 𝑎 = 3
deg 𝑏 = 3

deg 𝑐 = 2

deg 𝑑 = 3
deg 𝑓 = 2

deg 𝑒 = 3

Hence,
vertices with odd degree is even

(this is called the handshaking lemma)

Handshaking Lemma

a b

c

d

e

f

For graph 𝐺 = (𝑉, 𝐸) to be connected,

𝐸 ≥ 𝑉 − 1

Connected graph

a b

c

d

e

f

For graph 𝐺 = (𝑉, 𝐸) to be connected,

𝐸 ≥ 𝑉 − 1

Connected graph

Q: Prove this

a b

c

d

e

f

For graph 𝐺 = (𝑉, 𝐸) to be connected,

𝐸 ≥ 𝑉 − 1

(necessary but not sufficient)

Connected graph

For graph 𝐺 = (𝑉, 𝐸) to be connected,

𝐸 ≥ 𝑉 − 1

If |𝐸| = |𝑉| − 1 and graph is
connected, edges form a spanning tree

Connected graph

a b

c

d

e

f

Directed Graphs

Directed graph

𝐺 = (𝑉, 𝐸)

where 𝑉 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓}

a b

c

d

e

f

and 𝐸 = { 𝑎, 𝑏 , 𝑏, 𝑎 , (𝑏, 𝑐), (𝑑, 𝑎), … }

(2 degrees: in-degree & out-degree)

Directed Graphs

Directed graph

𝐺 = (𝑉, 𝐸)

where 𝑉 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓}

a b

c

d

e

f

and 𝐸 = { 𝑎, 𝑏 , 𝑏, 𝑎 , (𝑏, 𝑐), (𝑑, 𝑎), … }

(2 degrees: in-degree & out-degree)

indeg 𝑎 = 3
outdeg 𝑎 = 2

Why Graphs?

Talks on graphs so far:

• Bipartite matching (scaling algorithm)

• Stable and popular matchings

• Colouring planar graphs

Graphs are Everywhere

Roads

Source: Arun Ganesh, Flickr and Wikimedia,
Renumbered National Highways map of India (Schematic).jpg

Source: https://www.delhimetrorail.com/network_map

Graphs are Everywhere

Trains

Source: Audrey Austin, https://inbound.business.wayne.edu/blog/bid/277012/
Facebook-Analysis-Using-Social-Network-Analysis

Graphs are Everywhere

Social networks

https://inbound.business.wayne.edu/blog/bid/277012/Facebook-Analysis-Using-Social-Network-Analysis

Source: Drozdz et al., “Hierarchical organization of H. Eugene
Stanley scientific collaboration community in weighted network
representation,” Journal of Informetrics

Graphs are Everywhere

Scientific collaboration

Source: https://conceptdraw.com/a1997c3/preview ,
based on FIFA 2014 elimination rounds

Graphs are Everywhere

Sports tournaments

https://conceptdraw.com/a1997c3/preview

Graphs are Everywhere

• electrical networks

• data networks

• holdings of mutual funds in stocks

• assigning students to colleges

• assigning time slots to courses, and courses to lecture halls

• ?

Basic Problems in Graphs

• assignment: students to colleges; doctors to hospitals; etc.

• is a graph connected?

• find a path between two vertices

• find a shortest path between two vertices

• add edges to connect a set of vertices

• remove edges to disconnect a set of vertices

• ?

Basic Algorithms

0. storing a graph:

a b

c

d

e

f

Basic Algorithms

0. storing a graph:

a b

c

d

e

f

adjacency matrix:

a b c d e f

a 1 1 1

b 1 1 1

c 1 1

d 1 1 1

e 1 1 1

f 1 1

Size: 𝑂(𝑉 2)

Basic Algorithms

0. storing a graph:

a b

c

d

e

f

adjacency list:

b e fa NULL

a c eb NULL

b dc NULL

a c ed NULL

b d fe NULL

a ef NULL

Basic Algorithms

0. storing a graph:

a b

c

d

e

f

adjacency list:

b e fa NULL

a c eb NULL

b dc NULL

...

Size: 𝑂(𝑉 + |𝐸|)

Basic Algorithms

0. storing a graph:

a b

c

d

e

f

adjacency list:

b e fa NULL

a c eb NULL

b dc NULL

...

Size: 𝑂(𝑉 + |𝐸|)

Basic Algorithms

0. storing a graph:

a b

c

d

e

f

1. adjacency matrix

2. adjacency list

Questions?

Basic Algorithms
1. traversing a graph: list all nodes connected to a
given node

✓
b

c d

e

f

g

h

i

a

Basic Algorithms
1. traversing a graph: list all nodes connected to a
given node

✓
b

c d

e

f

g

h

i

Breadth-First-Search (𝐺 = (𝑉, 𝐸) , a)

Q:

a

Basic Algorithms
1. traversing a graph: list all nodes connected to a
given node

✓
b

c d

e

f

g

h

i

Breadth-First-Search (𝐺 = (𝑉, 𝐸) , a)

aQ:

a “visit” a; add a to Q

Basic Algorithms
1. traversing a graph: list all nodes connected to a
given node

✓
b

c d

e

f

g

h

i

Breadth-First-Search (𝐺 = (𝑉, 𝐸) , a)

aQ:

a “visit” a; add a to Q
while (Q is not empty)

pick a vertex v from Q
“visit” all unvisited neighbours of v
add these to Q

Basic Algorithms
1. traversing a graph: list all nodes connected to a
given node

✓
b

c d

e

f

g

h

i

Breadth-First-Search (𝐺 = (𝑉, 𝐸) , a)

“visit” a; add a to Q
while (Q is not empty)

pick a vertex v from Q

add these to Q

h b aQ:

a ✓

✓

“visit” all unvisited neighbours of v

Basic Algorithms
1. traversing a graph: list all nodes connected to a
given node

✓
b

c d

e

f

g

h

i

Breadth-First-Search (𝐺 = (𝑉, 𝐸) , a)

“visit” a; add a to Q
while (Q is not empty)

pick a vertex v from Q

add these to Q

c h b aQ:

a

✓

✓

✓

“visit” all unvisited neighbours of v

Basic Algorithms
1. traversing a graph: list all nodes connected to a
given node

✓
b

c d

e

f

g

h

i

Breadth-First-Search (𝐺 = (𝑉, 𝐸) , a)

“visit” a; add a to Q
while (Q is not empty)

pick a vertex v from Q

add these to Q

e i c h b aQ:

a

✓

✓

✓

✓

✓

“visit” all unvisited neighbours of v

Basic Algorithms
1. traversing a graph: list all nodes connected to a
given node

✓
b

c d

e

f

g

h

i

Breadth-First-Search (𝐺 = (𝑉, 𝐸) , a)

“visit” a; add a to Q
while (Q is not empty)

pick a vertex v from Q

add these to Q

d e i c h b aQ:

a

✓

✓

✓

✓

✓

✓

“visit” all unvisited neighbours of v

Basic Algorithms
1. traversing a graph: list all nodes connected to a
given node

✓
b

c d

e

f

g

h

i

Breadth-First-Search (𝐺 = (𝑉, 𝐸) , a)

“visit” a; add a to Q
while (Q is not empty)

pick a vertex v from Q

add these to Q

f d e i c h b aQ:

a

✓

✓

✓

✓

✓

✓

✓

“visit” all unvisited neighbours of v

Basic Algorithms
1. traversing a graph: list all nodes connected to a
given node

✓
b

c d

e

f

g

h

i

Breadth-First-Search (𝐺 = (𝑉, 𝐸) , a)

“visit” a; add a to Q
while (Q is not empty)

pick a vertex v from Q

add these to Q

g f d e i c h b aQ:

a

✓

✓

✓

✓

✓

✓

✓

✓

“visit” all unvisited neighbours of v

Basic Algorithms
1. traversing a graph: list all nodes connected to a
given node

✓
b

c d

e

f

g

h

i

Breadth-First-Search (𝐺 = (𝑉, 𝐸) , a)

“visit” a; add a to Q
while (Q is not empty)

pick a vertex v from Q

add these to Q

g f d e i c h b aQ:

a

✓

✓

✓

✓

✓

✓

✓

✓

“visit” all unvisited neighbours of v

Basic Algorithms
1. traversing a graph: list all nodes connected to a
given node

✓
b

c d

e

f

g

h

i

Breadth-First-Search (𝐺 = (𝑉, 𝐸) , a)

“visit” a; add a to Q
while (Q is not empty)

pick a vertex v from Q

add these to Q

a

✓

✓

✓

✓

✓

✓

✓

✓

“visit” all unvisited neighbours of v

Q: Time taken?

Basic Algorithms
1. traversing a graph: list all nodes connected to a
given node

✓
b

c d

e

f

g

h

i

Breadth-First-Search (𝐺 = (𝑉, 𝐸) , a)

“visit” a; add a to Q
while (Q is not empty)

pick a vertex v from Q

a

✓

✓

✓

✓

✓

✓

✓

✓

“visit” all unvisited neighbours of v
add these to Q (and add edge from v)

g f d e i c h b aQ:

Basic Algorithms
1. traversing a graph: list all nodes connected to a
given node

✓
b

c d

e

f

g

h

i

Breadth-First-Search (𝐺 = (𝑉, 𝐸) , a)

“visit” a; add a to Q
while (Q is not empty)

pick a vertex v from Q

add these to Q (and add edge from v)

g f d e i c h b aQ:

a

✓

✓

✓

✓

✓

✓

✓

✓

“visit” all unvisited neighbours of v

Basic Algorithms
1. traversing a graph: list all nodes connected to a
given node

Breadth-First-Search (𝐺 = (𝑉, 𝐸) , a)

“visit” a; add a to Q
while (Q is not empty)

pick a vertex v from Q

add these to Q (and add edge from v)

g f d e i c h b aQ:

“visit” all unvisited neighbours of v

b

c

d

e

f
g

h

i

a

Basic Algorithms
1. traversing a graph: list all nodes connected to a
given node

b

c

d

e

f
g

h

i

Breadth-First-Search (𝐺 = (𝑉, 𝐸) , a)a
- set of (undirected) edges used to

“visit” nodes gives a tree

- all non-tree edges are between vertices:

- on the same level, or
- at a difference of one level

Basic Algorithms
1. traversing a graph: list all nodes connected to a
given node

b

c

d

e

f
g

h

i

Breadth-First-Search (𝐺 = (𝑉, 𝐸) , a)a
- set of (undirected) edges used to

“visit” nodes gives a tree

- all non-tree edges are between vertices:

- on the same level, or
- at a difference of one level

Thm: For any vtx v,
the path from a along tree edges
is a shortest path in 𝐺

Basic Algorithms
1. traversing a graph: list all nodes connected to a
given node

BFS gives shortest-paths from a node to
all other nodes.

- works in directed graphs also
- works when edges have lengths also

(but may take a long time)

a
b

c

d

e

f

5

4

6

20

2

4

2
5

c

d

Basic Algorithms
1. traversing a graph: list all nodes connected to a
given node

b

c d

e

f g

h

i

Depth-First-Search (𝐺 = (𝑉, 𝐸) , a)

aStack:

a
“visit” a; add a to Stack
while (Stack is not empty)

pick a vertex v from Stack
“visit” all unvisited neighbours of v
add these to Stack

Basic Algorithms
1. traversing a graph: list all nodes connected to a
given node

b

c d

e

f g

h

i

1. Breadth First Searcha
2. Depth First Search

Questions?

Basic Algorithms
2. find shortest-paths in a weighted graph

Dijkstra (𝐺 = (𝑉, 𝐸, 𝑙) , a)a

h
c

d

g

b

i
f

e

4

2 2

6

3 6

3
6

2

4

3

3

Basic Algorithms

Edsger Wybe Dijkstra

Dutch mathematician, theoretical physicist,
computer programmer

Solved the shortest path problem in 1956

Received Turing award, ACM PODC influential
paper award (renamed the Dijkstra prize) for
contributions to programming languages and
distributed computing

Wiki link

https://en.wikipedia.org/wiki/Edsger_W._Dijkstra

Basic Algorithms
2. find shortest-paths in a weighted graph

Dijkstra (𝐺 = (𝑉, 𝐸, 𝑙) , a)a

h
c

d

g

b

i
f

e

4

2 2

6

3 6

3
6

2

4

3

3

dist(a) = 0, dist(v) = ∞ for all others

0 ∞

∞
∞ ∞

∞

∞
∞

∞

S = {a} \\ set of shortest-distance vertices

Basic Algorithms
2. find shortest-paths in a weighted graph

Dijkstra (𝐺 = (𝑉, 𝐸) , a)a

h
c

d

g

b

i
f

e

4

2 2

6

3 6

3
6

2

4

3

3

dist(a) = 0, dist(v) = ∞ for all others

0 4

2
∞ ∞

∞

∞
∞

∞

S = {a} \\ set of shortest-distance vertices
update distance for vtxs adjacent to a

Basic Algorithms
2. find shortest-paths in a weighted graph

Dijkstra (𝐺 = (𝑉, 𝐸) , a)a

h
c

d

g

b

i
f

e

4

2 2

6

3 6

3
6

2

4

3

3

dist(a) = 0, dist(v) = ∞ for all others

0 4

2
∞ ∞

∞

∞
∞

∞

S = {a} \\ set of shortest-distance vertices

update distance for vtxs w adjacent to v

while S ≠ V

update distance for vtxs adjacent to a

add vtx v with smallest dist to S

Basic Algorithms
2. find shortest-paths in a weighted graph

Dijkstra (𝐺 = (𝑉, 𝐸) , a)a

h
c

d

g

b

i
f

e

4

2 2

6

3 6

3
6

2

4

3

3

dist(a) = 0, dist(v) = ∞ for all others

0 4

2
∞ ∞

∞

∞
∞

∞

S = {a} \\ set of shortest-distance vertices

update distance for vtxs w adjacent to v

while S ≠ V

update distance for vtxs adjacent to a

add vtx v with smallest dist to S

Basic Algorithms
2. find shortest-paths in a weighted graph

Dijkstra (𝐺 = (𝑉, 𝐸) , a)a

h
c

d

g

b

i
f

e

4

2 2

6

3 6

3
6

2

4

3

3

dist(a) = 0, dist(v) = ∞ for all others

0 4

2
8 ∞

4

∞
∞

5

S = {a} \\ set of shortest-distance vertices

update distance for vtxs w adjacent to v

while S ≠ V

update distance for vtxs adjacent to a

add vtx v with smallest dist to S

Basic Algorithms
2. find shortest-paths in a weighted graph

Dijkstra (𝐺 = (𝑉, 𝐸) , a)a

h
c

d

g

b

i
f

e

4

2 2

6

3 6

3
6

2

4

3

3

dist(a) = 0, dist(v) = ∞ for all others

0 4

2
8 ∞

4

∞
∞

5

S = {a} \\ set of shortest-distance vertices

update distance for vtxs w adjacent to v

while S ≠ V

update distance for vtxs adjacent to a

add vtx v with smallest dist to S

Basic Algorithms
2. find shortest-paths in a weighted graph

Dijkstra (𝐺 = (𝑉, 𝐸) , a)a

h
c

d

g

b

i
f

e

4

2 2

6

3 6

3
6

2

4

3

3

dist(a) = 0, dist(v) = ∞ for all others

0 4

2
6 ∞

4

∞
∞

5

S = {a} \\ set of shortest-distance vertices

update distance for vtxs w adjacent to v

while S ≠ V

update distance for vtxs adjacent to a

add vtx v with smallest dist to S

Basic Algorithms
2. find shortest-paths in a weighted graph

Dijkstra (𝐺 = (𝑉, 𝐸) , a)a

h
c

d

g

b

i
f

e

4

2 2

6

3 6

3
6

2

4

3

3

dist(a) = 0, dist(v) = ∞ for all others

0 4

2
6 ∞

4

∞
∞

5

S = {a} \\ set of shortest-distance vertices

update distance for vtxs w adjacent to v

while S ≠ V

update distance for vtxs adjacent to a

add vtx v with smallest dist to S

Basic Algorithms
2. find shortest-paths in a weighted graph

Dijkstra (𝐺 = (𝑉, 𝐸) , a)a

h
c

d

g

b

i
f

e

4

2 2

6

3 6

3
6

2

4

3

3

dist(a) = 0, dist(v) = ∞ for all others

0 4

2
6 7

4

7
10

5

S = {a} \\ set of shortest-distance vertices

update distance for vtxs w adjacent to v

while S ≠ V

update distance for vtxs adjacent to a

add vtx v with smallest dist to S

Basic Algorithms
2. find shortest-paths in a weighted graph

Dijkstra (𝐺 = (𝑉, 𝐸) , a)a

h
c

d

g

b

i
f

e

4

2 2

6

3 6

3
6

2

4

3

3

dist(a) = 0, dist(v) = ∞ for all others

0 4

2
6 7

4

7
10

5

S = {a} \\ set of shortest-distance vertices

update distance for vtxs w adjacent to v

while S ≠ V

update distance for vtxs adjacent to a

add vtx v with smallest dist to S

Basic Algorithms
2. find shortest-paths in a weighted graph

Dijkstra (𝐺 = (𝑉, 𝐸) , a)a

h
c

d

g

b

i
f

e

4

2 2

6

3 6

3
6

2

4

3

3

dist(a) = 0, dist(v) = ∞ for all others

0 4

2
6 7

4

7
8

5

S = {a} \\ set of shortest-distance vertices

update distance for vtxs w adjacent to v

while S ≠ V

update distance for vtxs adjacent to a

add vtx v with smallest dist to S

Basic Algorithms
2. find shortest-paths in a weighted graph

Dijkstra (𝐺 = (𝑉, 𝐸) , a)a

h
c

d

g

b

i
f

e

4

2 2

6

3 6

3
6

2

4

3

3

dist(a) = 0, dist(v) = ∞ for all others

0 4

2
6 7

4

7
8

5

S = {a} \\ set of shortest-distance vertices

update distance for vtxs w adjacent to v

while S ≠ V

update distance for vtxs adjacent to a

add vtx v with smallest dist to S

Basic Algorithms
2. find shortest-paths in a weighted graph

Dijkstra (𝐺 = (𝑉, 𝐸) , a)a

h
c

d

g

b

i
f

e

4

2 2

6

3 6

3
6

2

4

3

3

dist(a) = 0, dist(v) = ∞ for all others

0 4

2
6 7

4

7
8

5

S = {a} \\ set of shortest-distance vertices

update distance for vtxs w adjacent to v

while S ≠ V

update distance for vtxs adjacent to a

add vtx v with smallest dist to S

Basic Algorithms
2. find shortest-paths in a weighted graph

Dijkstra (𝐺 = (𝑉, 𝐸) , a)a

h
c

d

g

b

i
f

e

4

2 2

6

3 6

3
6

2

4

3

3

dist(a) = 0, dist(v) = ∞ for all others

0 4

2
6 7

4

7
8

5

S = {a} \\ set of shortest-distance vertices

update distance for vtxs w adjacent to v

while S ≠ V

update distance for vtxs adjacent to a

add vtx v with smallest dist to S

add directed edge (v,w)
(and remove other edges into w)

Basic Algorithms
2. find shortest-paths in a weighted graph

Dijkstra (𝐺 = (𝑉, 𝐸) , a)a

h
c

d

g

b

i
f

e

4

2 2

6

3 6

3
6

2

4

3

3

dist(a) = 0, dist(v) = ∞ for all others

0 4

2
6 7

4

7
8

5

S = {a} \\ set of shortest-distance vertices

update distance for vtxs w adjacent to v

while S ≠ V

update distance for vtxs adjacent to a

add vtx v with smallest dist to S

add directed edge (v,w)
(and remove other edges into w)

Basic Algorithms
2. find shortest-paths in a weighted graph

Dijkstra (𝐺 = (𝑉, 𝐸) , a)a

h
c

d

g

b

i
f

e

4

3 18

2 3

2
6

3

4

3

3

dist(a) = 0, dist(v) = ∞ for all others
S = {a} \\ set of shortest-distance vertices

update distance for vtxs w adjacent to v

while S ≠ V

update distance for vtxs adjacent to a

add vtx v with smallest dist to S

add directed edge (v,w)
(and remove other edges into w)

6

Basic Algorithms
2. find shortest-paths in a weighted graph

Dijkstra’s algorithma

h
c

d

g

b

i
f

e

4

3 18

2 3

2
6

3

4

3

3

6

Questions?

Basic Algorithms
3. find min-cost graph that connects all vertices

a

h
c

d

g

b

i
f

e

13

25 46

8 10

7
15

9

18

3

20

1

11

Basic Algorithms
3. find min-cost graph that connects all vertices

a

h
c

d

g

b

i
f

e

13

25 46

8 10

7
15

9

18

3

20

1

11

can this graph have cycles?

how many edges does this graph have?

Basic Algorithms
3. find min-cost graph that connects all vertices

Kruskal (𝐺 = (𝑉, 𝐸, 𝑐))a

h
c

d

g

b

i
f

e

13

25 46

8 10

7
15

9

18

3

20

1

11

Basic Algorithms
3. find min-cost graph that connects all vertices

Kruskal (𝐺 = (𝑉, 𝐸, 𝑐))a

h
c

d

g

b

i
f

e

13

25 46

8 10

7
15

9

18

3

20

Keep picking min-cost edges, as long
as you don’t get a cycle

1

11

Basic Algorithms
3. find min-cost graph that connects all vertices

Kruskal (𝐺 = (𝑉, 𝐸, 𝑐))a

h
c

d

g

b

i
f

e

13

25 46

8 10

7
15

9

18

3

20

Keep picking min-cost edges, as long
as you don’t get a cycle

1

11

Basic Algorithms
3. find min-cost graph that connects all vertices

Kruskal (𝐺 = (𝑉, 𝐸, 𝑐))a

h
c

d

g

b

i
f

e

13

25 46

8 10

7
15

9

18

3

20

Keep picking min-cost edges, as long
as you don’t get a cycle

1

11

Basic Algorithms
3. find min-cost graph that connects all vertices

Kruskal (𝐺 = (𝑉, 𝐸, 𝑐))a

h
c

d

g

b

i
f

e

13

25 46

8 10

7
15

9

18

3

20

Keep picking min-cost edges, as long
as you don’t get a cycle

1

11

Basic Algorithms
3. find min-cost graph that connects all vertices

Kruskal (𝐺 = (𝑉, 𝐸, 𝑐))a

h
c

d

g

b

i
f

e

13

25 46

8 10

7
15

9

18

3

20

Keep picking min-cost edges, as long
as you don’t get a cycle

1

11

Basic Algorithms
3. find min-cost graph that connects all vertices

Kruskal (𝐺 = (𝑉, 𝐸, 𝑐))a

h
c

d

g

b

i
f

e

13

25 46

8 10

7
15

9

18

3

20

Keep picking min-cost edges, as long
as you don’t get a cycle

1

11

Basic Algorithms
3. find min-cost graph that connects all vertices

Kruskal (𝐺 = (𝑉, 𝐸, 𝑐))a

h
c

d

g

b

i
f

e

13

25 46

8 10

7
15

9

18

3

20

Keep picking min-cost edges, as long
as you don’t get a cycle

1

11

Basic Algorithms
3. find min-cost graph that connects all vertices

Kruskal (𝐺 = (𝑉, 𝐸, 𝑐))a

h
c

d

g

b

i
f

e

13

25 46

8 10

7
15

9

18

3

20

Keep picking min-cost edges, as long
as you don’t get a cycle

1

11

Basic Algorithms
3. find min-cost graph that connects all vertices

Kruskal (𝐺 = (𝑉, 𝐸, 𝑐))a

h
c

d

g

b

i
f

e

13

25 46

8 10

7
15

9

18

3

20

Keep picking min-cost edges, as long
as you don’t get a cycle

1

11

x

Basic Algorithms
3. find min-cost graph that connects all vertices

Kruskal (𝐺 = (𝑉, 𝐸, 𝑐))a

h
c

d

g

b

i
f

e

13

25 46

8 10

7
15

9

18

3

20

Keep picking min-cost edges, as long
as you don’t get a cycle

1

11

x

Basic Algorithms
3. find min-cost graph that connects all vertices

Kruskal (𝐺 = (𝑉, 𝐸, 𝑐))a

h
c

d

g

b

i
f

e

13

25 46

8 10

7
15

9

18

3

20

Keep picking min-cost edges, as long
as you don’t get a cycle

1

11

x

x

Basic Algorithms
3. find min-cost graph that connects all vertices

Kruskal (𝐺 = (𝑉, 𝐸, 𝑐))a

h
c

d

g

b

i
f

e

13

25 46

8 10

7
15

9

18

3

20

Keep picking min-cost edges, as long
as you don’t get a cycle

1

11

x

x

x

x

x

x

Basic Algorithms
3. find min-cost graph that connects all vertices

Kruskal’s algorithm (gives an MST)a

h
c

d

g

b

i
f

e

13

25 46

8 10

7
15

9

18

3

20

1

11

x

x

x

x

x

x

Questions?

Summary

0. representing graphs – adjacency matrix, adjacency list

Basic graph algorithms

1. traversing graphs – breadth first search

(gives shortest paths)

2. quickly finding shortest paths – Dijkstra’s algorithm

3. cheaply connecting all vertices – Kruskal’s algorithm

Summary

0. representing graphs – adjacency matrix, adjacency list

Basic graph algorithms

1. traversing graphs – breadth first search

(gives shortest paths)

2. quickly finding shortest paths – Dijkstra’s algorithm

3. cheaply connecting all vertices – Kruskal’s algorithm

See you after the break!

