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will also be joining you for the mentorship sessions



This course

Graphs are v v fundamental

Focus is going to be on understanding

All material will be uploaded to the webpage
www.tcs tifr.res.in/~umang/vv24.html

To start with, please put your name and where you're from
on the sheet of paper being passed around.



http://www.tcs.tifr.res.in/~umang/vv24.html

Nomenclature

A graph (or network)
consists of vertices (or nodes)

connected by edges (or links or arcs)

G = (V,E)
whereV = {a,b,c,d,e, f}

and E = {{a,b},{a, f} {a,d},
{b,e}, {b,c},
{c,d}, {e,d} {e, 1}



Nomenclature

Neighbourhood N(v): set of vertices
adjacentto v

E.g.,.N(a) ={b,d, [}

Degree deg(v) = |[N(v)|
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Nomenclature

Neighbourhood N(v): set of vertices
adjacentto v

E.g,N(a) ={b,e, f}
Degree deg(v) = |[N(v)|

Q: Givenagraph G = (V,E),
2ydeg(v) 77 |E|

2.ydeg(v) =16, [E|=8



2. deg(v) = 16,

|E] =8

Handshaking Lemma

Givenagraph ¢ = (V,E),
Z deg(v) = 2|E|
v

Hence,
# vertices with odd degree is even

(this is called the handshaking lemma)




Connected graph

Forgraph G = (V,E) to be connected,
El = |V] -1




Connected graph

Forgraph G = (V,E) to be connected,
El = |V] -1

Q: Prove this



Connected graph

Forgraph ¢ = (V,E) to be connected,
E| = |V]| —1

(necessary but not sufficient)



Connected graph

Forgraph ¢ = (V,E) to be connected,
E| = |V]| —1

If |[E| = |V| — 1and graphis
connected, edges form a spanning tree




Directed Graphs

5 Directed graph

G = (V,E)
whereV = {a,b,c,d,e, [}
and E = {(a,b),(b,a),(b,c),(d,a),..}

(2 degrees: in-degree & out-degree)




Directed Graphs

indeg(a) = 3

outdeg(a) = 2 Directed graph

G = (V,E)
whereV = {a,b,c,d,e, [}
and E = {(a,b),(b,a),(b,c),(d,a),..}

(2 degrees: in-degree & out-degree)



Why Graphs?

Talks on graphs so far:
* Bipartite matching (scaling algorithm)
* Stable and popular matchings

 Colouring planar graphs
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Graphs are Everywhere

Roads
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Graphs are Everywhere

Social networks

=N b

Source: Audrey Austin, https://inbound.business.wayne.edu/blog/bid/277012/
Facebook-Analysis-Using-Social-Network-Analysis



https://inbound.business.wayne.edu/blog/bid/277012/Facebook-Analysis-Using-Social-Network-Analysis

Graphs are Everywhere

Scientific collaboration

Source: Drozdz et al., “Hierarchical organization of H. Eugene
Stanley scientific collaboration community in weighted network
representation,” Journal of Informetrics
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Graphs are Everywhere

Sports tournaments

Source: https://conceptdraw.com/al1997c3/preview ,
based on FIFA 2014 elimination rounds



https://conceptdraw.com/a1997c3/preview

Graphs are Everywhere

electrical networks

data networks

holdings of mutual funds in stocks
assigning students to colleges

assigning time slots to courses, and courses to lecture halls

?



Basic Problems in Graphs

assignment: students to colleges; doctors to hospitals; etc.
IS a graph connected?
find a path between two vertices

find a shortest path between two vertices

add edges to connect a set of vertices

remove edges to disconnect a set of vertices

?



Basic Algorithms

0. storing a graph:

b
a



Basic Algorithms

0. storing a graph: adjacency matrix:

5 b a b ¢ d e f
a [ 1
b | 1 1 1
C 1 1
d | 1 1 1
e 1 1 1
fl1 1

N _/

d Size: 0(|V]%)



Basic Algorithms

0. storing a graph: adjacency list:

5 b 3 b> e> f>NULL

' o [ e Snu
C b> d>NULL

‘ d |a > c e »NULL
e | b > d ) f ONUL




Basic Algorithms
0. storing a graph: adjacency list:
5 b 3 b> e> f>NULL
Sl e nuw
C b> d>NULL

Size: O(|V| + |E|)



Basic Algorithms
0. storing a graph: adjacency list:
5 b 3 b> e> f>NULL
Sl e nuw
C b> d>NULL

Size: O(|V| + |E|)



Basic Algorithms

0. storing a graph: 1. adjacency matrix
5 o 2. adjacency list
Questions?



Basic Algorithms

1. traversing a graph: list all nodes connected to a
given node

v

d




Basic Algorithms

1. traversing a graph: list all nodes connected to a

given node
Breadth-First-Search (G = (V,E) , a)

d




Basic Algorithms

1. traversing a graph: list all nodes connected to a

given node
Breadth-First-Search (G = (V,E) , a)

d “visit” a; add ato Q




Basic Algorithms

1. traversing a graph: list all nodes connected to a

given node
Breadth-First-Search (G = (V,E) , a)

d “visit” a; add ato Q
while (Q is not empty)

pick a vertex v from Q

“visit” all unvisited neighbours of v
add these to Q

Q: m a|




1. traversing a graph: list all nodes connected to a

given node

v
b

Basic Algorithms

Breadth-First-Search (G = (V,E) , a)

“visit” a; add ato Q

while (Q is not empty)

pick a vertex v from Q

“visit” all unvisited neighbours of v

add these to Q

Q  m

h bal =




1. traversing a graph: list all nodes connected to a

given node

v
b

Breadth-First-Search

Basic Algorithms

(G=(V,E),a)

“visit” a; add ato Q

while (Q is not empty)

pick a vertex v from Q

“visit” all unvisited neighbours of v

add these to Q

Q  m

c h b—a|m




Basic Algorithms

1. traversing a graph: list all nodes connected to a

given node
v v Breadth-First-Search (G = (V,E) , a)

b “visit” a; add ato Q
while (Q is not empty)

pick a vertex v from Q

“visit” all unvisited neighbours of v
add these to Q

. Q. m eichba




Basic Algorithms

1. traversing a graph: list all nodes connected to a

given node

v
b

d v

Breadth-First-Search (G = (V,E) , a)

“visit” a; add ato Q
while (Q is not empty)

pick a vertex v from Q

“visit” all unvisited neighbours of v
add these to Q

Q  m

deiehbal




Basic Algorithms

1. traversing a graph: list all nodes connected to a

given node
v v Breadth-First-Search (G = (V,E) , a)

b “visit” a; add ato Q
d v while (Q is not empty)

pick a vertex v from Q

“visit” all unvisited neighbours of v
add these to Q

Q: = fdetrehba




Basic Algorithms

1. traversing a graph: list all nodes connected to a

given node
v v Breadth-First-Search (G = (V,E) , a)

b “visit” a; add ato Q
d v while (Q is not empty)

pick a vertex v from Q

“visit” all unvisited neighbours of v
add these to Q

Q: = gfdetehbam




Basic Algorithms

1. traversing a graph: list all nodes connected to a

given node

v
b

d v

Breadth-First-Search (G = (V,E) , a)

“visit” a; add ato Q
while (Q is not empty)

pick a vertex v from Q

“visit” all unvisited neighbours of v
add these to Q

Q: =

gfdetehba/m




Basic Algorithms

1. traversing a graph: list all nodes connected to a

given node
v v Breadth-First-Search (G = (V,E) , a)

“visit” a; add ato Q
while (Q is not empty)

pick a vertex v from Q

“visit” all unvisited neighbours of v
add these to Q

Q: Time taken?




Basic Algorithms

1. traversing a graph: list all nodes connected to a
given node

v v Breadth-First-Search (G = (V,E) , a)

b “visit” a; add ato Q
d v while (Q is not empty)
pick a vertex v from Q

“visit” all unvisited neighbours of v
add these to Q (and add edge from v)

Q: m gfdei+ehba

=



Basic Algorithms

1. traversing a graph: list all nodes connected to a
given node

v v Breadth-First-Search (G = (V,E) , a)

b “visit” a; add ato Q
d v while (Q is not empty)
pick a vertex v from Q

“visit” all unvisited neighbours of v
add these to Q (and add edge from v)

Q: m gfdei+ehba

=



Basic Algorithms

1. traversing a graph: list all nodes connected to a
given node

Breadth-First-Search (G = (V,E) , a)

“visit” a; add ato Q
while (Q is not empty)
pick a vertex v from Q

“visit” all unvisited neighbours of v
add these to Q (and add edge from v)

Q: m gfdei+ehba

=



Basic Algorithms

1. traversing a graph: list all nodes connected to a
given node

Breadth-First-Search (G = (V,E) , a)

- set of (undirected) edges used to
“visit” nodes gives a tree

- all non-tree edges are between vertices:

- on the same level, or
- at a difference of one level




Basic Algorithms

1. traversing a graph: list all nodes connected to a
given node

Breadth-First-Search (G = (V,E) , a)

- set of (undirected) edges used to
“visit” nodes gives a tree

- all non-tree edges are between vertices:

- on the same level, or
- at a difference of one level
Thm: Forany vitxv,

the path from a along tree edges
IS a shortest path in G




Basic Algorithms

1. traversing a graph: list all nodes connected to a
given node

b BFS gives shortest-paths from a node to
O all other nodes.

- works in directed graphs also

- works when edges have lengths also
(but may take a long time)




Basic Algorithms

1. traversing a graph: list all nodes connected to a

given node
5 5 Depth-First-Search (G = (V,E) , a)
“visit” a; add a to Stack
d while (Stack is not empty)

pick a vertex v from Stack

“visit” all unvisited neighbours of v
add these to Stack

g »
Stack: a
-



Basic Algorithms

1. traversing a graph: list all nodes connected to a

given node

5 5 1. Breadth First Search

2. Depth First Search

Questions?




Basic Algorithms
2. find shortest-paths in a weighted graph

Dijkstra (G = (V,E, 1), a)




Basic Algorithms

Edsger Wybe Dijkstra

Dutch mathematician, theoretical physicist,
computer programmer

Solved the shortest path problem in 1956

Received Turing award, ACM PODC influential
paper award (renamed the Dijkstra prize) for
contributions to programming languages and
distributed computing

Wiki link



https://en.wikipedia.org/wiki/Edsger_W._Dijkstra

Basic Algorithms

2. find shortest-paths in a weighted graph

0

d

4

b

(00

Dijkstra (G = (V,E, 1), a)

dist(a) = O, dist(v) =« for all others

S ={a}

\\ set of shortest-distance vertices



Basic Algorithms

2. find shortest-paths in a weighted graph

0

d

4

b

A4

Dijkstra (G = (V,E) , a)

dist(a) = O, dist(v) =« for all others
S ={a} \\ set of shortest-distance vertices

update distance for vtxs adjacent to a



Basic Algorithms
2. find shortest-paths in a weighted graph

0| 4 NE Dijkstra (G = (V,E) , a)

p) dist(a) = O, dist(v) =« for all others

o S ={a} \\ set of shortest-distance vertices

g update distance for vtxs adjacent to a

while S #V

add vitx v with smallest distto S

update distance for vtxs w adjacent to v
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Basic Algorithms
2. find shortest-paths in a weighted graph

0| 4 NE Dijkstra (G = (V,E) , a)

p) dist(a) = O, dist(v) =« for all others

g S ={a} \\ set of shortest-distance vertices

g update distance for vtxs adjacent to a

while S #V

add vitx v with smallest distto S

update distance for vtxs w adjacent to v




Basic Algorithms
2. find shortest-paths in a weighted graph

913 4 5| 4 Dijkstra (G = (V,E) , a)

p) dist(a) = O, dist(v) =« for all others

g S ={a} \\ set of shortest-distance vertices

g update distance for vtxs adjacent to a

while S #V

add vitx v with smallest distto S

update distance for vtxs w adjacent to v




Basic Algorithms
2. find shortest-paths in a weighted graph

913 4 5| 4 Dijkstra (G = (V,E) , a)

p) dist(a) = O, dist(v) =« for all others

6 S ={a} \\ set of shortest-distance vertices

g update distance for vtxs adjacent to a

while S #V

add vitx v with smallest distto S

update distance for vtxs w adjacent to v




Basic Algorithms

2. find shortest-paths in a weighted graph

0

B/

Dijkstra (G = (V,E) , a)

dist(a) = O, dist(v) =« for all others

S ={a} \\ set of shortest-distance vertices
update distance for vtxs adjacent to a

while S #V

add vitx v with smallest distto S

update distance for vtxs w adjacent to v



2. find shortest-paths in

0

B/

10

Basic Algorithms
a weighted graph
Dijkstra (G = (V,E) , a)

dist(a) = O, dist(v) =« for all others

S ={a} \\ set of shortest-distance vertices

update distance for vtxs adjacent to a

while S #V
add vtx v with smallest dist to S

update distance for vtxs w adjacent to v



Basic Algorithms

2. find shortest-paths in a weighted graph

0

2

d

4

10

b

Dijkstra (G = (V,E) , a)

dist(a) = O, dist(v) =« for all others

S ={a} \\ set of shortest-distance vertices
update distance for vtxs adjacent to a

while S #V

add vitx v with smallest distto S

update distance for vtxs w adjacent to v



Basic Algorithms

2. find shortest-paths in a weighted graph

0

2

d

4

b

Dijkstra (G = (V,E) , a)

dist(a) = O, dist(v) =« for all others

S ={a} \\ set of shortest-distance vertices
update distance for vtxs adjacent to a

while S #V

add vitx v with smallest distto S

update distance for vtxs w adjacent to v



Basic Algorithms
2. find shortest-paths in a weighted graph

0 3 4 \bih Dijkstra (G = (V,E) , a)
p) , dist(a) = O, dist(v) =« for all others
6 S ={a} \\ set of shortest-distance vertices
6 C 4 g / update distance for vtxs adjacent to a
L while S #V
2 4]/ 3 add vtx v with smallest distto S
3 6 e

update distance for vtxs w adjacent to v




Basic Algorithms
2. find shortest-paths in a weighted graph

0177 4 NE X Dijkstra (G = (V,E) , a)

p) , dist(a) = O, dist(v) =« for all others
6 S ={a} \\ set of shortest-distance vertices
) 6 (S 4 g / update distance for vtxs adjacent to a
\ while S #V
2 4]/ 3 add vtx v with smallest dist to S
3 S < 3 update distance for vtxs w adjacent to v
| 3 |8 ;




Basic Algorithms
2. find shortest-paths in a weighted graph

0| 4 o | 4 Dijkstra (G = (V,E) , a)

p) , dist(a) = O, dist(v) =« for all others

6 S ={a} \\ set of shortest-distance vertices
S (C 4 g / update distance for vtxs adjacent to a
h while S # V
2 41/ 3 add vitx v with smallest distto S
3 6 = 3 update distance for vitxs w adjacent to v
i 3 |8 6 add directed edge (v,w)
- f 71(g (and remove other edges into w)




Basic Algorithms

2. find shortest-paths in a weighted graph

0

A4

Dijkstra (G = (V,E) , a)

dist(a) = O, dist(v) =« for all others
S ={a} \\ set of shortest-distance vertices
update distance for vtxs adjacent to a
while S #V
add vtx v with smallest distto S

update distance for vtxs w adjacent to v

add directed edge (v,w)
(and remove other edges into w)



Basic Algorithms
2. find shortest-paths in a weighted graph

Dijkstra (G = (V,E) , a)

dist(a) = O, dist(v) =« for all others
S ={a} \\ set of shortest-distance vertices
update distance for vtxs adjacent to a
while S #V
add vtx v with smallest distto S

update distance for vtxs w adjacent to v

add directed edge (v,w)
(and remove other edges into w)




Basic Algorithms
2. find shortest-paths in a weighted graph

Dijkstra’s algorithm

Questions?
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@ 13 ® can this graph have cycles?

25 5 11, 4 how many edges does this graph have?
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3. find min-cost graph that connects all vertices

............ 13 Kruskal (G = (V,E, c))
25 6 11 A Keep picking min-cost edges, as long
>< as you don’t get a cycle
| (€18
A ,,
I X
al 1 O,X 20
15
| / X 3
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3. find min-cost graph that connects all vertices

(@)% B (b) Kruskal’s algorithm (gives an MST)
:"/ . 7
25 1 \g 11 4 Questions’
X
(c)-18
g <@
° X
g| 107 20
15
i 7 X3



Summary

Basic graph algorithms

0. representing graphs — adjacency matrix, adjacency list
1. traversing graphs — breadth first search

(gives shortest paths)
2. quickly finding shortest paths — Dijkstra’s algorithm

3. cheaply connecting all vertices — Kruskal's algorithm



Summary

Basic graph algorithms

0. representing graphs — adjacency matrix, adjacency list
1. traversing graphs — breadth first search

(gives shortest paths)
2. quickly finding shortest paths — Dijkstra’s algorithm

3. cheaply connecting all vertices — Kruskal's algorithm

See you after the break!



